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The abc Conjecture of the Derived 
Logarithmic Functions of Euler’s Function 

and Its Computer Verification
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Abstract
Regarding Euler’s (totient) function, for an arbitrary number n > 1, there 
exists a k that possesses the characteristic where φk (n) = 1. In this case, 
if k is expressed as L(n) for n, then L possesses the characteristic of being 
perfectly logarithmic. For this L, we (Yamashita, Miyata) have provided 
the following L version abc conjecture.  
	 Conjecture: When a, b, and c are relatively prime, numbers are natural, 
and a + b = c, then
	 max{L(a), L(b), L(c)} < 2∙L(rad (abc))
is feasible.
	 This paper describes the properties of L and presents verification that 
this conjecture is correct up to 109 using a computer experiment. We also 
note that the abc conjecture recently considered solved by Prof. Mochizuki 
at Kyoto University is different from the conjecture presented here. 

Introduction

Considering φk(x) = φ(φk–1(x)) (k > 1) as φ1(x) = φ(x) with respect to 
Euler’s function φ, when x > 1 then φ(x) < x. Therefore, there always exists 
a minimum k such that φk(x) = 1 for all x > 1. Heretofore, in regard to the 
properties of this k, Pilali ([1],[2]), Shapiro ([3],[9]), Murányi ([4]), et al have 
shown that k possesses (imperfect) logarithmic characteristics. Since then, a 
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great deal of research on this has been conducted. Currently, it is known that 
by modifying this k (hereinafter, this k shall be indicated as L(x)), that the 
same becomes perfectly logarithmic.*1

	 In this paper, we describe the properties and the extensions of the logarith-
mic function L(x) derived of Euler’s function and note that the abc conjecture 
pertaining to L(x) we provide holds even under appropriate conditions other 
than primitive φ-triple, and also cite ours proof of this conjecture.

1. Various Properties of L(x)

1.1 Perfect logarithms of L(x) and the evaluation thereof

Definition. 1. (Yamashita, [5]) L is defined for the natural number n as follows 
and is called a derived logarithmic function of Euler’s function.

		         0	 (n = 1)
	 L(n) =	 L(φ(n))	 (n: odd number > 1)
		  L(φ(n)) + 1	 (n: even number).

	 At this time,

Proposition. 2. L is perfectly logarithmic for any natural number x, y, i.e.,
	 L(xy) = L(x) + L(y).
	 Therefore, the following simple evaluation can be obtained for L.

Proposition. 3. If L(x) = n, then
	 2n # x # 3n.
	 Then, immediately from there:

Corollary. 4. (E1) If x # 2n then L(x) # n.
(E2) If x $ 3n then L(x) $ n.

Corollary. 5. Let x = 2t · x0 (x0 : odd). If L(x) = n, then
	 x # 2t · 3n–t.

Corollary. 6. Let x = 2t · x0 (x0 : odd). If x > 2t · 3n–t, then

⎩
⎜

⎨
⎜

⎧
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	 L(x) > n.
	 etc. can be obtained, and the following evaluation formula can also be 
obtained.

Proposition. 7.
(E3) log3 2 (min (L(x), L(y)) + 1) # L(x + y)
	 # log2 3 (max (L(x), L(y)) + 1)
(E4) L(x – y) # log2 3 max (L(x), L(y))
Remark: log2 3=1.58496250..., log3 2 = 0.63092975...
	 As for this L, we have also obtained the following theorem as an extension 
form of Euler’s function φ.

Theorem. 8. (Miyata–Yamashita, [11], [12]) Let P be a set of prime numbers 
and P → N (natural numbers) be a function such that 1 # f (p) < p ! P. If
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and
	 Lφf (1) = 0
	 Lφf (x) = L(φφf (x)) + #{p ! f –1(1) : p |x}.
then
	 Lφf (xy) = Lφf (x) + Lφf (y).
	 The φf in the above theorem is a formal generalization of Euler’s function 
by f. Also, according to the symbol of this theorem, L(x) = Lφ(x).

1.2 Extensibility of L(x)
L defined on the natural numbers can naturally be extended on Z\ {0} via 
L(–1) = 0, L(–x) = L(x). For L(0), if we define, for example, L(0) = 3, it 

can also be is defined on Z. Therefore, if we define L 
x
y  = L(x) – L(y) for 

x
y  ! Q× = Q \ {0}, then we have a natural extension to Q. In other words, 

the following holds:

Proposition. 9. The L in Definition 1 can be naturally expanded on rational 
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numbers Q and the properties of Proposition 2 are also inherited.
	 Can this L (here is where we part ways with the world of Euler’s function 
φ) be expanded to a number Q[ 1– ] which is obtained by adding 1–  to real 
numbers R and Q, or complex number C, while maintaining the properties of 
Proposition 2?
	 Let us calculate by assuming the properties of Proposition 2. If we do 
some calculations with irrational numbers then,
	

L L2 2r r= =r^ ^h h
L L2 2 2 22 = =^ ^h h

L L L2 2 2
1 2 2

1/1 2= = =^ ^ ^h h h

L

・
・

・

・ L L
2

1 2 2
1 2 2

1/1 2= = - = --c ^ ^m h h

When observing this situation, in order for L to be welldefined even on R, the 
range must be at least R.
	 In addition, let us continue to observe C as well.
If

	
( )Ncos sinn n n2 1 2
!~

r r= + -a ak k

then from
	 nL(ω) = L(ωn) = L(1) = 0
we obtain
	 L(ω) = 0.
	 In addition, if we let ζ = cos α + 1–  sin α), and then take β as αβ = 2π, 
then
	 βL(ζ) = L(ζ β) = L(1) = 0   より   L(ζ) = 0
Then, it will be L(w) = 0 for the point w on the unit circle of a complex plane, 
and the arbitrary z of C has the form z = |z|w. Therefore, we can obtain
	 L(z) = L(|z|w) = L(|z|) + L(w) = L(|z|).
	 However, there remain issues as to whether L can continue or extend in a 
well-defined manner from Q to R and R to C (including handling of transcen-
dental numbers).



The abc Conjecture of the Derived Logarithmic Functions of Euler’s Function and Its 
Computer Verification

279

2. abc Conjecture for the Derived Logarithmic Function L

2.1 On the abc conjecture for L

Regarding this L, we have provided an abc conjecture (L version abc con-
jecture) pertaining to this derived logarithmic function L of Euler’s function.

Conjecture. (Yamashita–Miyata [14])
	 Let a, b, c be coprime. If a + b = c, then
	 max{L(a), L(b), L(c)} < 2 · L (rad (abc)).
	 Regarding this conjecture, we confirmed the correctness up to c < 230 by 
computer verification (Miyata-Yamashita [16]), and by touching lightly on 
the proof of the polynomial version abc conjecture by Stothers ([8]). The 
results we obtained were as follows.

Theorem. 10. (Yamashita–Miyata [14]) Let a, b, c be coprime. If a + b = c, 
then
	 max{L(a), L(b), L(c)} < 2 · L(rad (abc)).
	 The condition of Theorem 10 where φ(a) + φ(b) = φ(c) is feasible, (a, b, 
c), is called primitive φ–triple (Miyata–Yamashita [17]). Yamashita–Miyata 
have argued regarding the feasibility status of primitive φ–triple, and it is 
predicted to exist infinitely many times, and it is also known that the proba-
bility of existence of primitive φ–triple differs greatly due to the even/odd of 
c (Yamashita–Miyata [17]).

2.2 Cases other than primitive φ–triple

In Theorem 10 we asserted that our conjecture is correct in the case of primi-
tive φ–triple (Yamashita–Miyata [11]). However, what about cases other than 
primitive φ–triple?
	 Let p and q be coprime, and assume

	
p
q

c
a b
{

{ {
=

+^
^
^h
h
h

	 If so, then the following theorem holds.

Theorem. 11. Let a, b, c be coprime. If a + b = c > 2, then under the following 
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condition (*)
	 (*)   max (L(p), L(q)) # (2 – log2 3) L(rad (abc))
we obtain
	 max{L(a), L(b), L(c)} < 2 · L(rad (abc)).

Proof. When simultaneously both a + b = c and pφ(a) + pφ(b) = qφ(c), then 
we obtain

	
ac q c

c p a
a bc p b

b q c
c{ { { {

- = -c ^ ^ c ^ ^h h m h h m

Then if we assume

	
q c

c p a
a 0{ {

- =
^ ^h h

then
	 aqφ(c) = cpφ(a) = (a + b)φ(a)
On the other hand, qφ(c) = pφ(a) + pφ(b) results via
	 (# 1)   aφ(b) = bφ(a)
However it must be a|φ(a) because (a, b) = 1 and it must be a = 1. Meanwhile, 
if a = 1, then it is φ(b) = b via (# 1), therefore b = 1, resulting in a contradic-
tion in 2 < c = a + b = 1 + 1 = 2. Therefore,

	
q c

c p a
a 0.!

{ {
-

^ ^h h

From which follows:
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Then, if we note the fact that with k = a, b, c then

	
rad Nabc k

k
!

{^ ^h h

(hereinafter, rad (abc) will be denoted as rad*), then

	
| rad* rad* .b

ba p q c
c{ {

-c ^ c ^h m h m

Therefore,

	
rad* rad* .L a L p b

b q c
c

#
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If the domain of L is expanded Q and we note that
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k
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{
=
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regarding k = a, b, c, we can then use Proposition 7 (E4), which results in the 
following right side of the above equation:

	
rad* rad* .L p b

b q c
c{ {

-c c ^ c ^h m h mm

Simply, if we denote as rad* k
k{^ h

 = C(k) (k = a, b, c) then

	 L(a) # log2 3 · max(L(pC(b)), L(qC(c)))
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	 = 2L(rad*) = 2L(rad (abc))
	 In the case of primitive φ–triple, since L(p) = L(q) = L(1) = 0, then 
the conditions of Theorem 11 are satisfied and it can then be obtained as a 
corollary.
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Corollary. 12. (Theorem 10) If a primitive φ–triple then
	 max{L(a), L(b), L(c)} < 2 · L(rad (abc)) /

3. Computer Verification of the Conjecture

3.1 The difficulty of computer verification for c # N = 1010

For our conjecture, computer experiments have confirmed that the conjecture 
is true for c < 230 (Miyata–Yamashita [15]), but with c $ 230 and above it is 
difficult to verify using a typical PC environment.
	 Generally, the problem of finding φ(x) for x is called an RSA problem, and 
if φ(x) is easily obtained, the RSA public key encryption problem terminates, 
hence this is a very challenging problem.
	 Since it is necessary to repeatedly calculate φ(x) to calculate L(x), finding 
L(x) involves more difficulty than the RSA problem.
	 On the other hand, if L(x) is found for all x where O(N log logN), it 
is known that time complexity O(N log logN) can be used [15]. With that 
method, L(x) can be obtained with O(log logN) per each case.
	 However, this method requires a storage area for O(N) which amounts to 
4 GB of memory for N = 109.
	 In order to execute N = 1010 in the same way (since the integers to be 
handled exceed 32 bits, it would mean using a 64-bit integer type), 80 GB of 
memory is required, which is impossible to execute on a typical PC.
	 As follows, verification was performed at c # N = 1010 for (1, b, c). The 
verification results are shown in Table 1, and q(1, b, c) in the Table is called 
a quality of (1, b, c), expressed as

	
, , rad .q b c L bc

L c1 =^ ^
^
^h h
hh

The verification environment was as follows:
 ● PC: Acer Veriton X4620G
 ● OS: Windows 8.1 Pro
 ● CPU: Intel Core i5-3340 CPU (3.10GHz)
 ● RAM: 12.0GB
 ● Language: Java 9.0.1  (64-bit) Java (TM) SE Develoment Kit 9.0.1 (64-bit)
 ● Software: Eclipse
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Execution time: 36 minutes 54 seconds

3.2 Computer verification for c < 1010 regarding (1, b, c)

3.2.1 memoization
In the verification of (1, b, c), L(x) and L(rad (x)) were calculated in advance 
for x # 108 using the Miyata–Yamashita method ([15]). As necessary, for 
reference, memoization was implemented. The storage area required for this 
is about 800 MB.
	 To obtain L(x) for x > 108, the function was first factorized into prime 
numbers by trial division to obtain φ(x), and then the memo could be ref-
erenced with values less than 108. When x > 108, we sought to the greatest 
extent possible not to evaluate L(x).

3.2.2 Finding the maximum prime of c
In the verification algorithm, for S = 106, the calculation was performed by 
dividing 1010 into segments of size S.
	 For example, for the k–th segment, calculation is performed for c = kS + 
1, kS + 2, ... , (k + 1) S, and then, using the segmented sieve algorithm, the 
largest prime factor of each c was sought.
	 If S # N , N (i.e.,O (S logN) per each one), O (S logN) is sufficient for 
the calculation amount. Also, the storage area was O(S) (in reality, 16S bytes 
= 16 MB required).
	 Let p be the largest prime factor of and c = xp. If p < 108, L(c) and 
L(rad(c)) can be computed at high speed.
	 The reason being, if p > 100 then x < 108, it is therefore sufficient to 
merely reference the memo for both L(x) and L(p) because L(c) = L(x) + 
L(p).
	 On the other hand, if p < 100, c can be factorized into prime numbers at 
high speed because it is rendered with the product of small prime numbers 
less than 100.

3.3 (1, b, c)–triple determination

Definition. 13. Let 1 + b = c. (1, b, c) that satisfy 
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is called (1, b, c)–triple.
	 In this verification, we will judge whether each c is
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Determination is conducted as follows, with p being the maximum prime 
factor of c, and q being the maximum prime factor of c – 1.

3.3.1 Case p $ 108

	 If c = p, then L(p) / (L(rad (c – 1)) + L(p)) < 1.
	 If c = xp, then 1 < x < 100. Therefore,
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Therefore, in this case, (1, c – 1, c) does not become a triple.

3.3.2 Case p < 108 and q < 108

In this case, L(c), L(rad (c)), L(c – 1), L(rad (c – 1)) can be calculated at 
high speed. So we actually calculate as

	
rad radL c L c

L c
1- +^ ^
^

^ ^hh
h

hh

and then we simply need to investigate whether it is 1.25 or higher or not.

3.3.3 Case p < 108 and q $ 108

Since L(q) $ log3 108, then we first seek out

	
rad logL c

L c
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If this is not 1.25 or higher, then we can determine that is not a triple.
	 If not, then we calculate L(c – 1) and L(rad (c – 1)) while factorizing into 
prime numbers, then determine whether it is

	
rad rad .L c L c

L c
1 1 25$
- +^ ^
^

^ ^hh
h

hh

or not.
	 By the way, the number of cases where it was necessary to calculate L(c – 
1) and L(rad (c – 1)) by prime factorization was only several hundred times 
out of c # 1010. Of those, those that were 1.25 or higher more were 0 times.

3.3.4 The reason for a threshold of 1.25
There are three reasons why we used 1.25 as the sieving threshold for the 
verification algorithm.
Reason1:	�The lower the threshold, the higher the number of corresponding 

triples. And, for this study, we were not interested in small triples.
Reason2:	�Our conjecture was

	
rad rad
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	 but the enumeration is
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	 If there is a c such that
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	 then it will be

	
rad rad .logL c L c
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- +^ ^
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^ ^hh
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	� which means that it will always be included in this enumeration. 
Therefore, setting the threshold to 1.25 makes it possible to verify 
that there is no counterexample.

Reason3:	�As a practical reason, we tried memoization for 108 or less as we 
wanted to be able to be execute this verification using a personal 
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computer of ordinary specifications. (109 is impossible to do with-
out a slightly high-performance personal computer.)

4. Summary and Future Issues

In this study, we examined the domain extensibility of L(x), further improved 
results using primitive φ–triple, and showed our conjecture is correct for 
non-primitive φ–triples as long as certain conditions were met.
	 In terms of verifying our conjecture, we focused on (1, b, c) and verified 
that our conjecture is correct for C # 1010.
	 In terms of future issues, we still need a proof for our conjecture’s feasi-
bility, but we also need to verify our conjecture. For the time being, we will 
further increase N until c # N. However, of note are the following:
 ● �In the case of (1, b, c), we will increase the evaluation accuracy of the 

inequality in Section 4.5.1 and lower the sieve threshold to below 1.248.
 ● �We will optimally apply the inequality condition of Theorem 11 to the 

verification algorithm.
	 This paper is a partial addition to [19].

Notes

*1.	 Yamashita showed that k according to a different definition from theirs was 
completely logarithmic in his high school days ([5]). After that, in 1977, 
during correspondence with Professor Saburo Uchiyama (Tsukuba University) 
(Yamashita-Uchiyama, Uchiyama-Yamashita [6],[7]) he learned for the first 
time of Pilali ([1],[2]), Shapiro ([3]), and Murányi’s work ([4]). However, at this 
timing, facts in a perfect logarithmic form were not known in academic circles. 
It was not perfectly logarithmic in the first edition of Shapiro’s textbook in 1983 
([9]). The first time it become known that it was perfectly logarithmic in aca-
demic circles was in the note made by Prasad, et al. ([10]).
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Calculation Results

b c q (1, b, c)
2 · 37 54 · 7 1.667
19 · 5093 219 · 34 · 59 1.647
3 · 55 · 472 218 · 79 1.643
39 · 72 · 197 27 · 57 · 19 1.6
316 · 7 23 · 11 · 23 · 533 1.563
24 · 37 · 547 58 · 72 1.538
32 · 7 26 1.5
33 · 7 · 19 · 73 218 1.5
114 · 47 215 · 3 · 7 1.5
211 · 33 · 19 54 · 412 1.5
54 · 367 215 · 7 1.417
31 · 1272 25 · 56 1.417
72 · 127 · 337 221 1.4
26 · 3 · 5 · 7 · 134 · 17 2394 1.4
37 · 13 · 232 29 · 54 · 47 1.375
72 · 434 2 · 54 · 133 · 61 1.353



The abc Conjecture of the Derived Logarithmic Functions of Euler’s Function and Its 
Computer Verification

289

b c q (1, b, c)
54 · 19 · 15541 224 · 11 1.35
313 · 1277 23 · 192 · 893 1.35
23 · 75 · 132 · 109 33 · 113 · 413 1.35
25 · 32 172 1.333
25 · 3 · 52 74 1.333
32 · 5 · 7 · 13 212 1.333
34 · 79 28 · 52 1.333
5 · 113 29 · 13 1.333
26 · 32 · 5 · 29 174 1.333
25 · 3 · 5 · 7 · 292 414 1.333
53 · 74 · 11 213 · 13 · 31 1.333
74 · 2399 210 · 32 · 54 1.333
25 · 33 · 7 · 13 · 307 176 1.333
37 · 53 · 1312 220 · 7 · 271 1.333
39 · 54 · 709 26 · 53 · 1373 1.333
26 · 310 · 331 175 · 881 1.318
72 · 712 · 223 215 · 412 1.316
214 · 8111 35 · 57 · 7 1.313
73 · 487 2 · 174 1.308
72 · 132 · 186391 226 · 23 1.304
193 · 232 · 1613 219 · 3 · 612 1.304
212 · 53 35 · 72 · 43 1.3
313 · 792 216 · 2837 1.3
37 · 11 · 192 · 31 218 · 13 · 79 1.3
32 · 73 · 194 213 · 49109 1.3
74 · 13 · 232 · 59 24 · 36 · 174 1.3
5 · 1393 27 · 3 · 112 · 172 1.294
27 · 3 · 52 · 74 48012 1.294
23 · 37 · 54 · 7 132 · 6732 1.294
2 · 3 · 2813 75 · 892 1.294
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b c q (1, b, c)
3 · 157 · 33232 225 · 5 · 31 1.292
35 · 5 26 · 19 1.286
37 · 13 · 17 213 · 59 1.286
23 · 33 · 5 · 73 · 127 196 1.286
36 · 53 · 4003 217 · 112 · 23 1.286
314 · 311 215 · 5 · 7 · 1297 1.286
36 · 5 · 493291 218 · 193 1.286
210 · 3 · 52 · 43 · 1321 2574 1.28
27 · 32 · 5 · 29 · 41761 178 1.28
232 · 109 · 491 220 · 33 1.278
3 · 43 · 127 214 1.273
35 · 5 · 72 24 · 612 1.273
2 · 33 · 113 55 · 23 1.273
72 · 173 · 2143 222 · 3 · 41 1.273
473 · 53 · 109 222 · 11 · 13 1.273
19 · 373 · 937 222 · 5 · 43 1.273
53 · 712 · 2971 217 · 33 · 232 1.273
133 · 43 · 1632 27 · 57 · 251 1.273
24 · 32 · 53 · 7 · 172 · 109 2514 1.273
524287 219 1.267
3 · 73 · 113 29 · 52 · 107 1.267
34 · 37 · 79 · 173 216 · 54 1.263
38 · 7 · 937 210 · 52 · 412 1.263
3 · 5 · 7 · 113 · 317 218 · 132 1.263
24 · 32 · 7 · 11 · 132 · 79 236 1.263
36 · 173 · 71 212 · 73 · 181 1.263
33 · 52 · 73 · 5779 222 · 11 · 29 1.261
214 · 74 · 132 173 · 292 · 1609 1.261
193 22 · 5 · 73 1.25
34 · 7 · 112 210 · 67 1.25
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b c q (1, b, c)
35 · 643 2 · 57 1.25
5 · 74 · 19 28 · 34 · 11 1.25
3 · 52 · 11 · 31 · 41 220 1.25
5 · 29 · 473 29 · 35 · 112 1.25
24 · 52 · 72 · 132 · 29 38 · 114 1.25
59 · 163 24 · 33 · 23 · 1792 1.25
32 · 7 · 11 · 31 · 151 · 331 230 1.25
38 · 132 · 2311 218 · 52 · 17 · 23 1.25
22 · 54 · 173 · 211 33 · 73 · 234 1.25




